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EU decarbonization & the TANDEM project {1]

Future energy needs:

* Heat * Corresponds to 50% of EU energy needs
* Strongly dependent on fossils
* Decentralized

e Hydrogen
* Flexible Production

- SMR producing both electricity & heat

TANDEM main objective:
—> To facilitate the integration of SMR into Hybrid Energy Systems (HES) to support the European
energy transition:
- By developing methodologies and tools
—> By addressing safety issues and assessing the feasibility of an efficient integration
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Modeling for SMR the integration

Key factors for a successful integration:

e Extension of the current safety approach to nuclear HES A

* Operationality (flexibility) of energy production within hybrid .
energy systems > = Modeling

e Economic viability of SMRs in such hybrid energy systems

J Techno-economic
* European citizen engagement towards SMR-powered HES studies (MILP)
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The 2 HES configurations for TANDEM
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Images from K. VARRI et al. “Description of selected study cases for safety, techno-
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The Modelica TANDEM Library [2][3]

https://gitlab.pam-retd.fr/tandem/tandem
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https://gitlab.pam-retd.fr/tandem/tandem

Supporting Libraries

e ThermoSysPro & ThermoPower
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Thermohydraulics (& control) modeling:

power plants, heat storages, district heating...

e CEA Energy Process Library

Energy processes & associated media:
hydrolysis, fuel cells...

e Buildings
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Buildings (& supporting systems) modeling:
- electrical grid

e WindPowerPlant
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Models injecting variable electrical power.ta
the grid
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Nuclear Steam Supply System: the TSP model

Based on the E-SMR design
(ELSMOR project)
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Key features:

* Nuclear point-kinetics

* Temperature control by rod
movements

* Pressure control in the pressurizer

* Several Interfaces to the secondary
cycle (fluid or heat)

A “twin” model developed with
ThermoPower by Polimi
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https://www.elsmor.eu/

Nuclear Steam Supply System: benchmarks

1. Pressurizer modeling vs. experimental data (Shippingport):
—> Take into account the thermal stratification
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High Temperature Steam Electrolyser:

HTSE: - electrolysis @ high temperature (~750 °C),
- pre-heating and steam (“fuel”) production by “nuclear steam”.

Model codeveloped with the CEA:
* CEA for the electrolyser stack
e EDF for the BoP — 3

fromStack

H2_production
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High Temperature Steam Electrolyser: example

Control logic

input: H2 production
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optimized (power ratio,
heat recover design...) \

2.0E7

Total Consumption

Electrical Heaters

1,667 Stack Cunsumption

Thermal Power

1.2E7

Wl

B8.0E6

4.0E6 |

0.0E0 T T T T T
a 500

1000

1500

2.0 012
— H2 targst®
steam flow
010
164 H2 flow
r 0.08
7 ] - 0.08
2 >
3
&
r 0.04
R
r 002
047
7 r .00
0.0 T T -0.02
a 500 1000 1500

TAN

H2 [ka/s)



Other ThermoSysPro models for TANDEM

Conventional-Island BoP developed by the CEA

Light Temperature Electrolyser

H2_ProdTarget

uuuuuu

uuuuuu

H2_Prod

4>

11

£
&

RN H:
TANDEM



Developments Driven by TANDEM

Improvements (under) development :

* Nuclear core modeling 2 new “public” components for ThermoSysPro
* Pressurizer modeling = thermal stratification

* Water compressibility = thermal dilatation only, reduced overload

* New fluids and mixes = H,0 + H, + ...

* Hydrogen electrolyser models = LTE: Proton Exchange Membrane
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Usages of the library

Customizable HES simulator by assembling the available bricks...

—> or even new bricks of your own ! (depending on your need)

HES operation studies:

* Heat load transients (daily, seasonal...)
* Response to electrical grid needs (flexibility)

* Analyses of
e Architecture design
* Operation strategies
e Control logic

Optimization :
Clevery (MILP),
genetic algorithms...

HES accident scenarii:

* Provide realistic boundary conditions
- solicitation on the reactor N

* Allow preliminary studies

CATHARE, ATHLET...
but also, potentially, neutron
or thermo-mechanical codes
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Examples of techno-economic studies

Thermal storage valorization for plant flexibility

SMR for district heating
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Conclusions

* Modelica library with the bricks to build a customizable HES simulator:
SMR, heat storage, renewables, hydrolysers, district heating...

* Based on, among other libraries, ThermoSysPro

* The library enables:
* Normal operation tecno-economic studies
* More “realistic” safety studies (through coupling with safety codes)

* The project was also motivating framework to push some ThermoSysPro developments:
benchmark, new usages...
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Get in touch for more information:
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