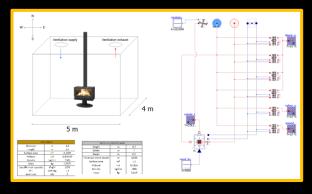
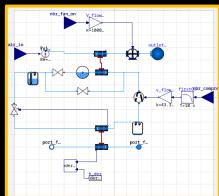
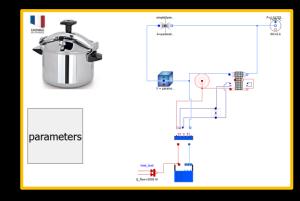


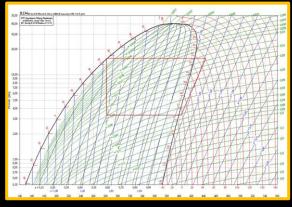
Optimisation des systèmes énergétiques


TAeZoSysPro et ChillerSysPro

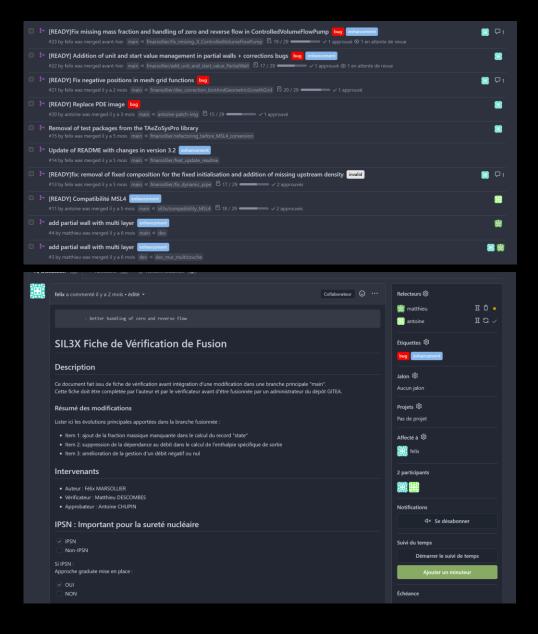
SIL3X : Felix, Matthieu, Antoine - CALOGENA: Pierre-Yves



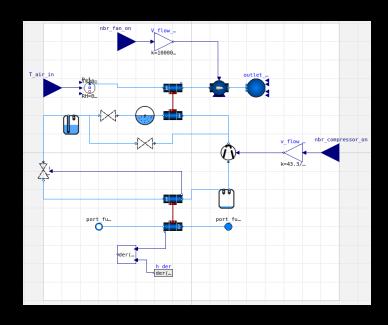

TAeZoSysPro - ChillerSysPro


Thermo-Aéraulique

Groupes froids



Développements


- TAeZoSysPro
 - Compatibilité MSL4
 - Murs multi-matériaux
 - Corrections de bugs et erreurs
 - Intégration du suivi qualité dans le dépôt GIT

Développements

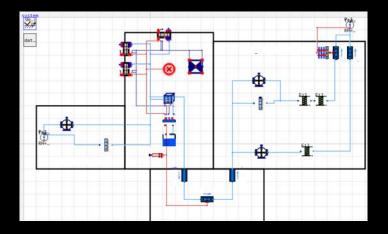
ChillerSysPro

- Utilisation des streams (fluidports de la MSL)
 - Possibilité de modéliser l'arrêt et le démarrage du groupe
- Modélisation réaliste des vannes de détente (surchauffe statique + opérationnelle)
- Ajout des modèles de composants de régulation
 - Vanne presso-statique (KVR)
 - Vanne pression différentielle (NRD)

Cas d'usage – TAeZoSysPro – CALOGENA

Projet CALOGENA

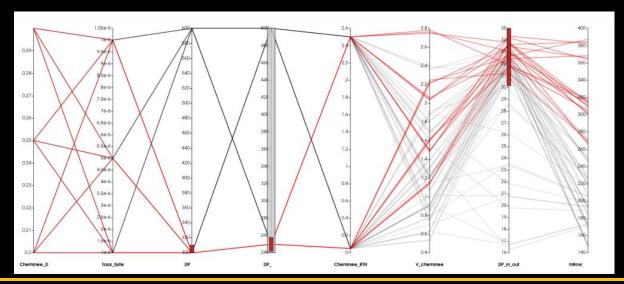
TAeZoSysPro, Open-Turns et Persalys en avant-projet


11/10/2024

Journée SysPro 2024

Cas d'usage – TAeZoSysPro - CALOGENA

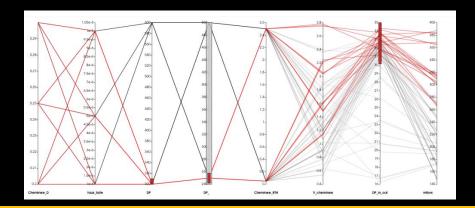
Modélisation d'un système de confinement dynamique passif


- Phénomènes physiques en jeu modélisés
 - Évapo-condensation
 - Transferts d'air, pertes de charges
 - Transferts thermiques échangeurs
 - Transfert convectif
 - Transfert radiatif
 - Systèmes : arrêt et démarrages
 - Tirage thermique

Cas d'usage – TAeZoSysPro - CALOGENA

Modélisation d'un système de confinement dynamique passif

- Etude paramétrique
 - Couplage OpenTurns / PESALYS
 - Plus de 5000 simulations
 - Identification des paramètres les plus influents



Cas d'usage – TAeZoSysPro - CALOGENA

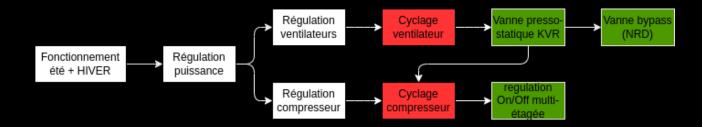
Modélisation d'un système de confinement dynamique passif

- Enseignements
 - Paramètres les plus influents
 - Dérisquage du projet
 - Optimisation de la conception

Cas d'usage - ChillerSysPro

Modélisation d'un Groupe Froid sur un système de secours

- Modélisation des composants du Groupe Froid
 - Condenseur
 - Evaporateur
 - Régulation pression (KVR & NRD)
 - Bouteille de liquide
 - Vanne de détente
 - Bouteille anti-coup de liquide
 - Compresseur
 - Modèle d'inertie du moteur


Calage Monte Carlo des coefficients d'échanges par rapport aux données fournisseurs

Cas d'usage - ChillerSysPro

Modélisation d'un Groupe Froid sur un système de secours

- Démonstration des risques du dimensionnement actuel
- Optimisation de la conception
 - Non prise en gel évaporateur
 - Gradient thermique temporels
 - Critères de température

TAeZoSysPro - ChillerSysPro

Prochaines étapes

- Qualification guide 28 ASN de TAeZoSysPro : automatisation de l'ensemble des tests, intégration de nouveaux cas de validation (ZEPHYR - VN24) – embarquer les utilisateurs nucléaires sur cette qualification (une seule qualification, mise à jour, maintenue)
- Continuer les développements
- Favoriser les usages dans l'éco-système nucléaire (GDO, SMR...)
- Centraliser les dépôts GIT et créer une dynamique

